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A Dirty Dozen: Twelve P-Value Misconceptions

Steven Goodman

The P value is a measure of statistical evidence that appears in virtually all medical
research papers. Its interpretation is made extraordinarily difficult because it is not part of
any formal system of statistical inference. As a result, the P value’s inferential meaning is
widely and often wildly misconstrued, a fact that has been pointed out in innumerable
papers and books appearing since at least the 1940s. This commentary reviews a dozen of
these common misinterpretations and explains why each is wrong. It also reviews the
possible consequences of these improper understandings or representations of its mean-
ing. Finally, it contrasts the P value with its Bayesian counterpart, the Bayes’ factor, which
has virtually all of the desirable properties of an evidential measure that the P value lacks,
most notably interpretability. The most serious consequence of this array of P-value
misconceptions is the false belief that the probability of a conclusion being in error can be
calculated from the data in a single experiment without reference to external evidence or
the plausibility of the underlying mechanism.
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he P value is probably the most ubiquitous and at the

same time, misunderstood, misinterpreted, and occa-
sionally miscalculated index!? in all of biomedical research.
In a recent survey of medical residents published in JAMA,
88% expressed fair to complete confidence in interpreting P
values, yet only 62% of these could answer an elementary
P-value interpretation question correctly.> However, it is not
just those statistics that testify to the difficulty in interpreting
P values. In an exquisite irony, none of the answers offered
for the P-value question was correct, as is explained later in
this chapter.

Writing about P values seems barely to make a dent in the
mountain of misconceptions; articles have appeared in the
biomedical literature for at least 70 years*!®> warning re-
searchers of the interpretive P-value minefield, yet these les-
sons appear to be either unread, ignored, not believed, or
forgotten as each new wave of researchers is introduced to the
brave new technical lexicon of medical research.

It is not the fault of researchers that the P value is difficult
to interpret correctly. The man who introduced it as a formal
research tool, the statistician and geneticist R.A. Fisher, could
not explain exactly its inferential meaning. He proposed a
rather informal system that could be used, but he never could
describe straightforwardly what it meant from an inferential
standpoint. In Fisher’s system, the P value was to be used as
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a rough numerical guide of the strength of evidence against
the null hypothesis. There was no mention of “error rates” or
hypothesis “rejection”; it was meant to be an evidential tool,
to be used flexibly within the context of a given problem.!¢

Fisher proposed the use of the term “significant” to be
attached to small P values, and the choice of that particular
word was quite deliberate. The meaning he intended was
quite close to that word’s common language interpretation—
something worthy of notice. In his enormously influential
1926 text, Statistical Methods for Research Workers, the first
modern statistical handbook that guided generations of bio-
medical investigators, he said:

Personally, the writer prefers to set a low standard of
significance at the 5 percent point . . . . A scientific fact
should be regarded as experimentally established only if
a properly designed experiment rarely fails to give this
level of significance.’”

In other words, the operational meaning of a P value less
than .05 was merely that one should repeat the experiment. If
subsequent studies also yielded significant P values, one
could conclude that the observed effects were unlikely to be
the result of chance alone. So “significance” is merely that:
worthy of attention in the form of meriting more experimen-
tation, but not proof in itself.

The P value story, as nuanced as it was at its outset, got
incomparably more complicated with the introduction of the
machinery of “hypothesis testing,” the mainstay of current
practice. Hypothesis testing involves a null and alternative
hypothesis, “accepting and rejecting” hypotheses, type I and
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Figure 1 Graphical depiction of the definition of a (one-sided) P
value. The curve represents the probability of every observed out-
come under the null hypothesis. The P value is the probability of the
observed outcome (x) plus all “more extreme” outcomes, repre-
sented by the shaded “tail area.”

»

11 “error rates,” “power,” and other related ideas. Even though
we use P values in the context of this testing system today, it
is not a comfortable marriage, and many of the misconcep-
tions we will review flow from that unnatural union. In-
depth explanation of the incoherence of this system, and the
confusion that flows from its use can be found in the litera-
ture.'6.18-20 Here we will focus on misconceptions about how
the P value should be interpreted.

The definition of the P value is as follows—in words: The
probability of the observed result, plus more extreme results, if the
null hypothesis were true; in algebraic notation: Prob(X = x |
Ho), where “X” is a random variable corresponding to some
way of summarizing data (such as a mean or proportion), and
“x”is the observed value of that summary in the current data.
This is shown graphically in Figure 1.

We have now mathematically defined this thing we call a P
value, but the scientific question is, what does it mean? This is
not the same as asking what people do when they observe
P =.05. That is a custom, best described sociologically. Ac-
tions should be motivated or justified by some conception of
foundational meaning, which is what we will explore here.

Table 1 Twelve P-Value Misconceptions

Because the P value is not part of any formal calculus of
inference, its meaning is elusive. Below are listed the most
common misinterpretations of the P value, with a brief dis-
cussion of why they are incorrect. Some of the misconcep-
tions listed are equivalent, although not often recognized as
such. We will then look at the P value through a Bayesian lens
to get a better understanding of what it means from an infer-
ential standpoint.

For simplicity, we will assume that the P value arises from
a two-group randomized experiment, in which the effect of
an intervention is measured as a difference in some average
characteristic, like a cure rate. We will not explore the many
other reasons a study or statistical analysis can be misleading,
from the presence of hidden bias to the use of improper
models; we will focus exclusively on the P value itself, under
ideal circumstances. The null hypothesis will be defined as
the hypothesis that there is no effect of the intervention (Ta-
ble 1).

Misconception #1: If P=.05, the null hypothesis has only a
5% chance of being true. This is, without a doubt, the most
pervasive and pernicious of the many misconceptions about
the P value. It perpetuates the false idea that the data alone
can tell us how likely we are to be right or wrong in our
conclusions. The simplest way to see that this is false is to
note that the P value is calculated under the assumption that
the null hypothesis is true. It therefore cannot simultaneously
be a probability that the null hypothesis is false. Let us sup-
pose we flip a penny four times and observe four heads,
two-sided P = .125. This does not mean that the probability
of the coin being fair is only 12.5%. The only way we can
calculate that probability is by Bayes’ theorem, to be dis-
cussed later and in other chapters in this issue of Seminars in
Hematology.>'-**

Misconception #2: A nonsignificant difference (eg, P >.05)
means there is no difference between groups. A nonsignificant
difference merely means that a null effect is statistically con-
sistent with the observed results, together with the range of
effects included in the confidence interval. It does not make
the null effect the most likely. The effect best supported by
the data from a given experiment is always the observed
effect, regardless of its significance.

Misconception #3: A statistically significant finding is clini-

P = .05 means that we have observed data that would occur only 5% of the time under the null hypothesis.

You should use a one-sided P value when you don’t care about a result in one direction, or a difference in

1 If P = .05, the null hypothesis has only a 5% chance of being true.
2 A nonsignificant difference (eg, P =.05) means there is no difference between groups.
3 A statistically significant finding is clinically important.
4 Studies with P values on opposite sides of .05 are conflicting.
5 Studies with the same P value provide the same evidence against the null hypothesis.
6
7 P = .05 and P =.05 mean the same thing.
8 P values are properly written as inequalities (eg, “P =.02” when P = .015)
9 P = .05 means that if you reject the null hypothesis, the probability of a type | error is only 5%.
10 With a P = .05 threshold for significance, the chance of a type | error will be 5%.
1
that direction is impossible.
12

A scientific conclusion or treatment policy should be based on whether or not the P value is significant.
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Figure 2 Figure showing how the P values of very different signifi-
cance can arise from trials showing the identical effect with different
precision (A, Misconception #4), or how same P value can be de-
rived from profoundly different results (B, Misconception #5).

cally important. This is often untrue. First, the difference may
be too small to be clinically important. The P value carries no
information about the magnitude of an effect, which is cap-
tured by the effect estimate and confidence interval. Second,
the end point may itself not be clinically important, as can
occur with some surrogate outcomes: response rates versus
survival, CD4 counts versus clinical disease, change in a mea-
surement scale versus improved functioning, and so on.2>27

Misconception #4: Studies with P values on opposite sides of
.05 are conflicting. Studies can have differing degrees of sig-
nificance even when the estimates of treatment benefit are
identical, by changing only the precision of the estimate, typ-
ically through the sample size (Figure 2A). Studies statisti-
cally conflict only when the difference between their results is
unlikely to have occurred by chance, corresponding to when
their confidence intervals show little or no overlap, formally
assessed with a test of heterogeneity.

Misconception #5: Studies with the same P value provide the
same evidence against the null hypothesis. Dramatically different
observed effects can have the same P value. Figure 2B shows
the results of two trials, one with a treatment effect of 3%
(confidence interval [CI], 0% to 6%), and the other with an
effect of 19% (CI, 0% to 38%). These both have a P value of
.05, but the fact that these mean different things is easily
demonstrated. If we felt that a 10% benefit was necessary to
offset the adverse effects of this therapy, we might well adopt
a therapy on the basis of the study showing the large effect
and strongly reject that therapy based on the study showing
the small effect, which rules out a 10% benefit. It is of course
also possible to have the same P value even if the lower CI is
not close to zero.

This seeming incongruity occurs because the P value de-
fines “evidence” relative to only one hypothesis—the null.
There is no notion of positive evidence—if data with a P =
.05 are evidence against the null, what are they evidence for?
In this example, the strongest evidence for a benefit is for 3%
in one study and 19% in the other. If we quantified evidence
in a relative way, and asked which experiment provided

greater evidence for a 10% or higher effect (versus the null),
we would find that the evidence was far greater in the trial
showing a 19% benefit.1318.28

Misconception #6: P = .05 means that we have observed
data that would occur only 5% of the time under the null hypoth-
esis. That this is not the case is seen immediately from the P
value’s definition, the probability of the observed data, plus
more extreme data, under the null hypothesis. The result with
the P value of exactly .05 (or any other value) is the most
probable of all the other possible results included in the “tail
area” that defines the P value. The probability of any individ-
ual result is actually quite small, and Fisher said he threw in
the rest of the tail area “as an approximation.” As we will see
later in this chapter, the inclusion of these rarer outcomes
poses serious logical and quantitative problems for the P
value, and using comparative rather than single probabilities
to measure evidence eliminates the need to include outcomes
other than what was observed.

This is the error made in the published survey of medical
residents cited in the Introduction,? where the following four
answers were offered as possible interpretations of P >.05:

a. The chances are greater than 1 in 20 that a difference
would be found again if the study were repeated.

b. The probability is less than 1 in 20 that a difference this
large could occur by chance alone.

c. The probability is greater than 1 in 20 that a difference
this large could occur by chance alone.

d. The chance is 95% that the study is correct.

The correct answer was identified as “c”, whereas the ac-
tual correct answer should have read, “The probability is
greater than 1 in 20 that a difference this large or larger could
occur by chance alone.”

These “more extreme” values included in the P-value def-
inition actually introduce an operational difficulty in calcu-
lating P values, as more extreme data are by definition unob-
served data. What “could” have been observed depends on
what experiment we imagine repeating. This means that two
experiments with identical data on identical patients could
generate different P values if the imagined “long run” were
different. This can occur when one study uses a stopping
rule, and the other does not, or if one employs multiple
comparisons and the other does not.23°

Misconception #7: P = .05 and P =.05 mean the same
thing. This misconception shows how diabolically difficult it
is to either explain or understand P values. There is a big
difference between these results in terms of weight of evi-
dence, but because the same number (5%) is associated with
each, that difference is literally impossible to communicate. It
can be calculated and seen clearly only using a Bayesian evi-
dence metric.!°

Misconception #8: P values are properly written as inequal-
ities (eg, “P =.02” when P = .015). Expressing all P values as
inequalities is a confusion that comes from the combination
of hypothesis tests and P values. In a hypothesis test, a pre-set
“rejection” threshold is established. It is typically set at P =
.05, corresponding to a type I error rate (or “alpha”) of 5%. In
such a test, the only relevant information is whether the



138

§. Goodman

difference observed fell into the rejection region or not, for
example, whether or not P =.05. In that case, expressing the
result as an inequality (P =.05 v P >.05) makes sense. But we
are usually interested in how much evidence there is against
the null hypothesis; that is the reason P values are used. For
that purpose, it matters whether the P value equals .50, .06,
.04 or .00001. To convey the strength of evidence, the exact
P value should always be reported. If an inequality is used to
indicate merely whether the null hypothesis should be re-
jected or not, that can be done only with a pre-specified
threshold, like .05. The threshold cannot depend on the observed
Pvalue, meaning we cannot report “P <<.01” if we observe P =
.008 and the threshold was .05. No matter how low the P
value, we must report “P <.05.” But rejection is very rarely
the issue of sole interest. Many medical journals require that
very small P values (eg, <.001) be reported as inequalities as
a stylistic issue. This is ordinarily not a big problem except in
situations where literally thousands of statistical tests have
been done (as in genomic experiments) when many very
small P values can be generated by chance, and the distinc-
tion between the small and the extremely small P values are
important for proper conclusions.

Misconception #9: P = .05 means that if you reject the null
hypothesis, the probability of a type I error is only 5%. Now we
are getting into logical quicksand. This statement is equiva-
lent to Misconception #1, although that can be hard to see
immediately. A type I error is a “false positive,” a conclusion
that there is a difference when no difference exists. If such a
conclusion represents an error, then by definition there is no
difference. So a 5% chance of a false rejection is equivalent to
saying that there is a 5% chance that the null hypothesis is
true, which is Misconception #1.

Another way to see that this is incorrect is to imagine that
we are examining a series of experiments on a therapy we are
certain is effective, such as insulin for diabetes. If we reject
the null hypothesis, the probability that rejection is false (a
type 1 error) is zero. Since all rejections of the null hypothesis
are true, it does not matter what the P value is. Conversely, if
we were testing a worthless therapy, say copper bracelets for
diabetes, all rejections would be false, regardless of the P
value. So the chance that a rejection is right or wrong clearly
depends on more than just the P value. Using the Bayesian
lexicon, it depends also on our a priori certitude (or the
strength of external evidence), which is quantified as the
“prior probability” of a hypothesis.

Misconception #10: With a P = .05 threshold for signifi-
cance, the chance of a type I error will be 5%. What is different
about this statement from Misconception #9 is that here we
are looking at the chance of a type I error before the experi-
ment is done, not after rejection. However, as in the previous
case, the chance of a type I error depends on the prior prob-
ability that the null hypothesis is true. If it is true, then the
chance of a false rejection is indeed 5%. If we know the null
hypothesis is false, there is no chance of a type I error. If we
are unsure, the chance of a false positive lies between zero
and 5%.

The point above assumes no issues with multiplicity or
study design. However, in this new age of genomic medicine,

it is often the case that literally thousands of implicit hypoth-
eses can be addressed in a single analysis, as in comparing the
expression of 5,000 genes between diseased and non-dis-
eased subjects. If we define “type I error” as the probability
that any of thousands of possible predictors will be falsely
declared as “real,” then the P value on any particular predic-
tor has little connection with the type I error related to the
whole experiment. Here, the problem is not just with the P
value itself but with the disconnection between the P value
calculated for one predictor and a hypothesis encompassing
many possible predictors. Another way to frame the issue is
that the search through thousands of predictors implies a
very low prior probability for any one of them, making the
posterior probability for a single comparison extremely low
even with a low P value. Since the 1 — (posterior probability)
is the probability of making an error when declaring that
relationship “real,” a quite low P value still carries with it a
high probability of false rejection.3!3?

Misconception #11: You should use a one-sided P value
when you don’t care about a result in one direction, or a difference
in that direction is impossible. This is a surprisingly subtle and
complex issue that has received a fair amount of technical
discussion, and there are reasonable grounds for disagree-
ment.>>-3® But the operational effect of using a one-sided P
value is to increase the apparent strength of evidence for a
result based on considerations not found in the data. Thus,
use of a one-sided P value means the P value will incorporate
attitudes, beliefs or preferences of the experimenter into the
assessment of the strength of evidence. If we are interested in
the P value as a measure of the strength of evidence, this does
not make sense. If we are interested in the probabilities of
making type I or type II errors, then considerations of one-
sided or two-sided rejection regions could make sense, but
there is no need to use P values in that context.

Misconception #12: A scientific conclusion or treatment pol-
icy should be based on whether or not the P value is significant.
This misconception encompasses all of the others. It is equiv-
alent to saying that the magnitude of effect is not relevant,
that only evidence relevant to a scientific conclusion is in the
experiment at hand, and that both beliefs and actions flow
directly from the statistical results. The evidence from a given
study needs to be combined with that from prior work to
generate a conclusion. In some instances, a scientifically de-
fensible conclusion might be that the null hypothesis is still
probably true even after a significant result, and in other
instances, a nonsignificant P value might still lead to a con-
clusion that a treatment works. This can be done formally
only through Bayesian approaches. To justify actions, we
must incorporate the seriousness of errors flowing from the
actions together with the chance that the conclusions are
wrong.

These misconceptions do not exhaust the range of mis-
statements about statistical measures, inference or even the P
value, but most of those not listed are derivative from the 12
described above. Tt is perhaps useful to understand how to
measure true evidential meaning, and look at the P value
from that perspective. There exists only one calculus for
quantitative inference—Bayes’ theorem—explicated in more
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depth elsewhere and in other articles in this issue. Bayes’
theorem can be written in words in this way:

Odds of the null hypothesis after obtaining the data
= Odds of the null hypothesis before obtaining the data
X Bayes’ factor
or to use more technical terms:
Posterior odds (Hy, given the data)
= Posterior odds (Hy, given the data)

o Prob(Data, under Hy)
Prob(Data, under H,)

where Odds = probability/(1 — probability), Hy, = null hy-
pothesis, and H, = alternative hypothesis.

It is illuminating that the P value does not appear any-
where in this equation. Instead, we have something called the
Bayes’ factor (also called the likelihood ratio in some set-
tings), which is basically the same as the likelihood ratio used
in diagnostic testing.?*3° It measures how strongly the ob-
served data are predicted by two competing hypotheses, and
is a measure of evidence that has most of the properties that
we normally mistakenly ascribe to the P value. Table 2 sum-
marizes desirable properties of an evidential measure, and
contrasts the likelihood ratio to the P value. The main point
here is that our intuition about what constitutes a good mea-
sure of evidence is correct; what is problematic is that the P
value has few of them. Interested readers are referred to more
comprehensive treatments of this contrast, which show,
among other things, that the P value greatly overstates the
evidence against the null hypothesis.* (See article by Sander
Greenland in this issue for more complete discussion of
Bayesian approaches™). Table 3 shows how P values can be
compared to the strongest Bayes’ factors that can be mustered
for that degree of deviation from the null hypothesis. What
this table shows is that (1) P values overstate the evidence
against the null hypothesis, and (2) the chance that rejection
of the null hypothesis is mistaken is far higher than is gener-
ally appreciated even when the prior probability is 50%.

One of many reasons that P values persist is that they are
part of the vocabulary of research; whatever they do or do not
mean, the scientific community feels they understand the
rules with regard to their use, and are collectively not familiar

Tahle 2 Evidential Properties of Bayes’ Factor Versus P Value

P Bayes’

Evidential Property Value Factor
Information about effect size? No Yes
Uses only observed data? No Yes
Explicit alternative hypothesis? No Yes
Positive evidence? No Yes
Sensitivity to stopping rules? Yes No
Easily combined across experiments? No Yes
Part of formal system of inference? No Yes

Tahle 3 Correspondence Between P Value, Smallest Bayes’
Factor, and Posterior Probability of an “Even Odds” Hypoth-
esis

Smallest Smallest Posterior Probability
P Bayes’ of Hy When Prior
Value Factor Probability = 50%
.10 .26 21%
.05 .15 13%
.03 .10 9%
.01 .04 4%
.001 .005 5%

enough with alternative methodologies or metrics. This was
discovered by the editor of the journal Epidemiology who tried
to ban their use but was forced to abandon the effort after
several years. "

In the meantime, what is an enlightened and well-meaning
researcher to do? The most important foundational issue to
appreciate is that there is no number generated by standard
methods that tells us the probability that a given conclusion is
right or wrong. The determinants of the truth of a knowledge
claim lie in combination of evidence both within and outside
a given experiment, including the plausibility and evidential
support of the proposed underlying mechanism. If that
mechanism is unlikely, as with homeopathy or perhaps in-
tercessory prayer, a low P value is not going to make a treat-
ment based on that mechanism plausible. It is a very rare
single experiment that establishes proof. That recognition
alone prevents many of the worst uses and abuses of the P
value. The second principle is that the size of an effect mat-
ters, and that the entire confidence interval should be con-
sidered as an experiment’s result, more so than the P value or
even the effect estimate. The confidence interval incorporates
both the size and imprecision in effect estimated by the data.

There hopefully will come a time when Bayesian measures
of evidence, or at least Bayesian modes of thinking, will sup-
plant the current ones, but until then we can still use stan-
dard measures sensibly if we understand how to reinterpret
them through a Bayesian filter, and appreciate that our infer-
ences must rest on many more pillars of support than the
study at hand.
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The Fisher, Neyman—-Pearson Theories of Testing
Hypotheses: One Theory or Two?

E. L. LEHMANN*

The Fisher and Neyman-Pearson approaches to testing statistical hypotheses are compared with respect to their attitudes to the
interpretation of the outcome, to power, to conditioning, and to the use of fixed significance levels. It is argued that despite basic
philosophical differences, in their main practical aspects the two theories are complementary rather than contradictory and that a
unified approach is possible that combines the best features of both. As applications, the controversies about the Behrens—Fisher
problem and the comparison of two binomials (2 X 2 tables) are considered from the present point of view.

KEY WORDS: Behrens-Fisher problem; Conditioning; Power; p-value; Significance level.

1. INTRODUCTION

The formulation and philosophy of hypothesis testing as
we know it today was largely created in the period 1915-
1933 by three men: R. A. Fisher (1890-1962), J. Neyman
(1894-1981), and E. S. Pearson (1895-1980). Since then it
has expanded into one of the most widely used quantitative
methodologies, and has found its way into nearly all areas
of human endeavor. It is a fairly commonly held view that
the theories due to Fisher on the one hand, and to Neyman
and Pearson on the other, are quite distinct. This is reflected
in the fact that separate terms are often used (although
somewhat inconsistently) to designate the two approaches:
significance testing for Fisher and hypothesis testing for
Neyman and Pearson. (Since both are concerned with the
testing of hypotheses, it is convenient here to ignore this
terminological distinction and to use the term ‘“hypothesis
testing” regardless of whether the testing is carried out in a
Fisherian or Neyman-Pearsonian mode.)

There clearly are important differences, both in philosophy
and in the treatment of specific problems. These were fiercely
debated by Fisher and Neyman in a way described by Zabell
(1992) as “a battle which had a largely destructive effect on
the statistical profession.” I believe that the ferocity of the
rhetoric has created an exaggerated impression of irrecon-
cilability. The purpose of this article is to see whether there
exists a common ground that permits a resolution of some
of the principal differences and a basis for rational discussion
of the remaining ones.

Some of the Fisher-Neyman debate is concerned with is-
sues studied in depth by philosophers of science (see, for
example, Braithwaite 1953; Hacking 1965; Kyburg 1974;
and Seidenfeld 1979). I am not a philosopher, and this article
is written from a statistical, not a philosophical, point of
view.

Section 2 presents some historical background for the two
points of view. Section 3 discusses the basic philosophical
difference between Fisher and Neyman. (Although the main
substantive papers [NP 1928 and 1933a] were joint by Ney-
man and Pearson, their collaboration stopped soon after
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Neyman left Pearson’s Department to set up his own pro-
gram in Berkeley. After that, the debate was carried on pri-
marily by Fisher and Neyman.) Sections 4, 5, and 6 discuss
three specific issues on which the two schools differ (fixed
levels versus p values, power, and conditioning). Section 7
illustrates the effect of these differences on the treatment of
two statistical problems, the 2 X 2 table and the Behrens—
Fisher problem, that have become focal points of the con-
troversy. Finally, Section 8 suggests a unified point of view
that does not resolve all questions but provides a common
basis for discussing the remaining issues.

For the sake of completeness, it should be said that in
addition to the Fisher and Neyman-Pearson theories there
exist other philosophies of testing, of which we shall mention
only two. There is Bayesian hypothesis testing, which, on
the basis of stronger assumptions, permits assigning proba-
bilities to the various hypotheses being considered. All three
authors were very hostile to this formulation and were in
fact motivated in their work by a desire to rid hypothesis
testing of the need to assume a prior distribution over the
available hypotheses.

Finally, in certain important situations tests can be ob-
tained by an approach also due to Fisher for which he used
the term fiducial. Most comparisons of Fisher’s work on hy-
pothesis testing with that of Neyman and Pearson (see, for
example, Barnett 1982; Carlson 1976; Morrison and Henkel
1970; Spielman 1974, 1978; Steger 1971) do not include a
discussion of the fiducial argument, which most statisticians
have found difficult to follow. Although Fisher himself
viewed fiducial considerations to be a very important part
of his statistical thinking, this topic can be split off from
other aspects of his work, and here I shall consider neither
the fiducial nor the Bayesian approach any further.

Critical discussion of the issues considered in this article
with references to the extensive literature, in a wider context
and from viewpoints differing from that presented here, can
be found in, for example, Oakes (1986) and Gigerenzer et
al. (1989).

2. TESTING STATISTICAL HYPOTHESES

The modern theory of testing hypotheses began with Stu-
dent’s discovery of the # test in 1908. This was followed by
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Fisher with a series of papers culminating in his book Sta-
tistical Methods for Research Workers (1925), in which he
created a new paradigm for hypothesis testing. He greatly
extended the applicability of the ¢ test (to the two-sample
problem and the testing of regression coefficients) and gen-
eralized it to the testing of hypotheses in the analysis of vari-
ance. He advocated 5% as the standard level (with 1% as a
more stringent alternative); through applying this new
methodology to a variety of practical examples, he established
it as a highly popular statistical approach for many fields of
science.

A question that Fisher did not raise was the origin of his
test statistics: Why these rather than some others? This is
the question that Neyman and Pearson considered and which
(after some preliminary work in Neyman and Pearson 1928)
they later answered (Neyman and Pearson 1933a). Their
solution involved not only the hypothesis but also a class of
possible alternatives and the probabilities of two kinds of
error: false rejection (Error I) and false acceptance (Error II).
The “best” test was one that minimized P, (Error II) subject
to a bound on Py (Error I), the latter being the significance
level of the test. They completely solved this problem for the
case of testing a simple (i.e., single distribution) hypothesis
against a simple alternative by means of the Neyman-
Pearson lemma. For more complex situations, the theory
required additional concepts, and working out the details of
this program was an important concern of mathematical
statistics in the following decades.

The Neyman-Pearson introduction to the two kinds of
error contained a brief statement that was to become the
focus of much later debate. “Without hoping to know
whether each separate hypothesis is true or false”, the authors
wrote, “we may search for rules to govern our behavior with
regard to them, in following which we insure that, in the
long run of experience, we shall not be too often wrong.”
And in this and the following paragraph they refer to a test
(i.e., a rule to reject or accept the hypothesis) as “‘a rule of
behavior”.

3. INDUCTIVE INFERENCE
VERSUS INDUCTIVE BEHAVIOR

Fisher considered statistics, the science of uncertain in-
ference, able to provide a key to the long-debated problem
of induction. He started one paper (Fisher 1932, p. 257) with
the statement “Logicians have long distinguished two modes
of human reasoning, under the respective names of deductive
and inductive reasoning. . . . In inductive reasoning we at-
tempt to argue from the particular, which is typically a body
of observational material, to the general, which is typically
a theory applicable to future experience.” He developed his
ideas in more detail in a later paper (Fisher 1935a, p. 39)

. . everyone who does habitually attempt the difficult task of
making sense of figures is, in fact, essaying a logical process of
the kind we call inductive, in that he is attempting to draw in-

ferences from the particular to the general. Such inferences we
recognize to be uncertain inferences. . . .

He continued in the next paragraph:

Although some uncertain inferences can be rigorously expressed
in terms of mathematical probability, it does not follow that
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mathematical probability is an adequate concept for the rigorous
expression of uncertain inferences of every kind. . . . The in-
ferences of the classical theory of probability are all deductive in
character. They are statements about the behaviour of individuals,
or samples, or sequences of samples, drawn from populations
which are fully known. . . . More generally, however, a math-
ematical quantity of a different kind, which I have termed math-
ematical likelihood, appears to take its place [i.e., the place of
probability] as a measure of rational belief when we are reasoning
from the sample to the population.

Neyman did not believe in the need for a special inductive
logic but felt that the usual processes of deductive thinking
should suffice. More specifically, he had no use for Fisher’s
idea of likelihood. In his discussion of Fisher’s 1935 paper
(Neyman, 1935, p. 74, 75) he expressed the thought that it
should be possible “to construct a theory of mathematical
statistics . . . based solely upon the theory of probability,”
and went on to suggest that the basis for such a theory can
be provided by “the conception of frequency of errors in
judgment.” This was the approach that he and Pearson had
earlier described as “inductive behavior”; in the case of hy-
pothesis testing, the behavior consisted of either rejecting the
hypothesis or (provisionally) accepting it.

Both Neyman and Fisher considered the distinction be-
tween “inductive behavior” and “inductive inference” to lie
at the center of their disagreement. In fact, in writing ret-
rospectively about the dispute, Neyman (1961, p. 142) said
that “the subject of the dispute may be symbolized by the
opposing terms “inductive reasoning” and “inductive be-
havior.” How strongly Fisher felt about this distinction is
indicated by his statement in Fisher (1973, p. 7) that “there
is something horrifying in the ideological movement repre-
sented by the doctrine that reasoning, properly speaking,
cannot be applied to empirical data to lead to inferences
valid in the real world.”

4. FIXED LEVELS VERSUS p VALUES

A distinction frequently made between the approaches of
Fisher and Neyman-Pearson is that in the latter the test is
carried out at a fixed level, whereas the principal outcome
of the former is the statement of a p value that may or may
not be followed by a pronouncement concerning significance
of the result.

The history of this distinction is curious. Throughout the
19th century, testing was carried out rather informally. It
was roughly equivalent to calculating an (approximate) p
value and rejecting the hypothesis if this value appeared to
be sufficiently small. These early approximate methods re-
quired only a table of the normal distribution. With the ad-
vent of exact small-sample tests, tables of X2, ¢, F, . . . were
also required. Fisher, in his 1925 book and later, greatly
reduced the needed tabulations by providing tables not of
the distributions themselves but of selected quantiles. (For
an explanation of this very influential decision by Fisher see
Kendall [1963]. On the other hand Cowles and Davis [1982]
argue that conventional levels of three probable errors or
two standard deviations, both roughly equivalent [in the
normal case] to 5% were already in place before Fisher.)
These tables allow the calculation only of ranges for the p
values; however, they are exactly suited for determining the
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critical values at which the statistic under consideration be-
comes significant at a given level. As Fisher wrote in ex-
plaining the use of his x? table (1946, p. 80):

In preparing this table we have borne in mind that in practice we

do not want to know the exact value of P for any observed X2,

but, in the first place, whether or not the observed value is open

to suspicion. If Pis between .1 and .9, there is certainly no reason

to suspect the hypothesis tested. If it is below .02, it is strongly

indicated that the hypothesis fails to account for the whole of the

facts. We shall not often be astray if we draw a conventional line

at .05 and consider that higher values of X? indicate a real dis-

crepancy.

Similarly, he also wrote (1935, p. 13) that “it is usual and
convenient for experimenters to take 5 percent as a standard
level of significance, in the sense that they are prepared to
ignore all results which fail to reach this standard . . .”

Fisher’s views and those of some of his contemporaries
are discussed in more detail by Hall and Selinger (1986).

Neyman and Pearson followed Fisher’s adoption of a fixed
level. In fact, Pearson (1962, p. 395) acknowledged that they
were influenced by “[Fisher’s] tables of 5 and 1% significance
levels which lent themselves to the idea of choice, in advance
of experiment, of the risk of the ‘first kind of error’ which
the experimenter was prepared to take.” He was even more
outspoken in a letter to Neyman of April 28, 1978 (unpub-
lished; in the Neyman collection of the Bancroft Library,
University of California, Berkeley): “If there had not been
these % tables available when you and I started work on
testing statistical hypotheses in 1926, or when you were
starting to talk on confidence intervals, say in 1928, how
much more difficult it would have been for us! The concept
of the control of 1st kind of error would not have come so
readily nor your idea of following a rule of behaviour. . . .
Anyway, you and I must be grateful for those two tables in
the 1925 Statistical Methods for Research Workers.” (For
an idea of what the Neyman-Pearson theory might have
looked like had it been based on p values instead of fixed
levels, see Schweder 1988.)

It is interesting to note that unlike Fisher, Neyman and
Pearson (1933a, p. 296) did not recommend a standard level
but suggested that “how the balance [between the two kinds
of error] should be struck must be left to the investigator,”
and (1933b, p. 497) “we attempt to adjust the balance be-
tween the risks P; and Pj; to meet the type of problem be-
fore us.”

It is thus surprising that in SMSI Fisher (1973, p. 44-45)
criticized the NP use of a fixed conventional level. He ob-
jected that

the attempts that have been made to explain the cogency of tests
of significance in scientific research, by reference to supposed
frequencies of possible statements, based on them, being right or
wrong, thus seem to miss the essential nature of such tests. A
man who ‘rejects’ a hypothesis provisionally, as a matter of ha-
bitual practice, when the significance is 1% or higher, will certainly
be mistaken in not more than 1% of such decisions. . . . However,
the calculation is absurdly academic, for in fact no scientific worker
has a fixed level of significance at which from year to year, and
in all circumstances, he rejects hypotheses; he rather gives his

mind to each particular case in the light of his evidence and his
ideas.

The difference between the reporting of a p value or that
of a statement of acceptance or rejection of the hypothesis
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was linked by Fisher in Fisher (1973, pp. 79-80), to the
distinction between drawing conclusions or making deci-
sions.

The conclusions drawn from such tests constitute the steps by
which the research worker gains a better understanding of his
experimental material, and of the problems which it presents.
. . . More recently, indeed, a considerable body of doctrine has
attempted to explain, or rather to reinterpret, these tests on the
basis of quite a different model, namely as means to making de-
cisions in an acceptance procedure.

Responding to earlier versions of these and related objec-
tions by Fisher to the Neyman-Pearson formulation, Pearson
(1955, p. 206) admitted that the terms ‘“acceptance” and
“rejection” were perhaps unfortunately chosen, but of his
joint work with Neyman he said that “from the start we
shared Professor Fisher’s view that in scientific inquiry, a
statistical test is ‘a means of learning’ ” and “I would agree
that some of our wording may have been chosen inade-
quately, but I do not think that our position in some respects
was or is so very different from that which Professor Fisher
himself has now reached.”

The distinctions under discussion are of course related to
the argument about “inductive inference” vs. “inductive be-
havior,” but in this debate Pearson refused to participate.
He concludes his response to Fisher’s 1955 attack with:
“Professor Fisher’s final criticism concerns the use of the
term ‘inductive behavior’; this is Professor Neyman’s field
rather than mine.”

5. POWER

As was mentioned in Section 2, a central consideration
of the Neyman-Pearson theory is that one must specify not
only the hypothesis H but also the alternatives against which
it is to be tested. In terms of the alternatives, one can then
define the type Il error (false acceptance) and the power of
the test (the rejection probability as a function of the alter-
native). This idea is now fairly generally accepted for its
importance in assessing the chance of detecting an effect
(i.e., a departure from H) when it exists, determining the
sample size required to raise this chance to an acceptable
level, and providing a criterion on which to base the choice
of an appropriate test.

Fisher never wavered in his strong opposition to these
ideas. Following are some of his objections:

1. A type II error consists in falsely accepting H, and
Fisher (1935b, p. ) emphasized that there is no reason for
“believing that a hypothesis has been proved to be true merely
because it is not contradicted by the available facts.” This is
of course correct, but it does not diminish the usefulness of
power calculations.

2. A second point Fisher raised is, in modern terminology,
that the power cannot be calculated because it depends on
the unknown alternative. For example (Fisher 1955, p. 73),
he wrote:

The frequency of the 1st class [type I error] . . . is calculable and
therefore controllable simply from the specification of the null
hypothesis. The frequency of the 2nd kind must depend . . .
greatly on how closely they [rival hypotheses] resemble the null
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hypothesis. Such errors are therefore incalculable . . . merely
from the specification of the null hypothesis, and would never
have came into consideration in the theory only of tests of sig-
nificance, had the logic of such tests not been confused with that
of acceptance procedures. (He discussed the same point in Fisher
1947, p. 16-17.)

Fisher was of course aware of the importance of power,
as is clear from the following remarks (1947, p. 24): “With
respect to the refinements of technique, we have seen above
that these contribute nothing to the validity of the experiment
and of the test of significance by which we determine its
result. They may, however, be important, and even essential,
in permitting the phenomenon under test to manifest itself.”
The section in which this statement appears is tellingly en-
titled “Qualitative Methods of Increasing Sensitiveness.”
Fisher accepted the importance of the concept but denied
the possibility of assessing it quantitatively.

Later in the same book Fisher made a very similar dis-
tinction regarding the choice of test. Under the heading
“Multiplicity of Tests of the Same Hypothesis,” he devoted
a section (sec. 61) to this topic. Here again, without using
the term, he referred to alternatives when he wrote (Fisher
1947, p. 182) that “we may now observe that the same data
may contradict the hypothesis in any of a number of different
ways.” After illustrating how different tests would be appro-
priate for different alternatives, he continued (p. 185):

The notion that different tests of significance are appropriate to
test different features of the same null hypothesis presents no
difficulty to workers engaged in practical experimentation but
has been the occasion of much theoretical discussion among stat-
isticians. The reason for this diversity of view-point is perhaps
that the experimenter is thinking in terms of observational values,
and is aware of what observational discrepancy it is which interests
him, and which he thinks may be statistically significant, before
he inquires what test of significance, if any, is available appropriate
to his needs. He is, therefore, not usually concerned with the
question: To what observational feature should a test of signifi-
cance be applied?

The idea that there is no need for a theory of test choice,
because an experienced experimenter knows what is the ap-
propriate test, is expressed more strongly in a letter to W. E.
Hick of October 1951 (Bennett 1990, p. 144), who, in asking
about “one-tail” vs. “two-tail” in X2, had referred to his lack
of knowledge concerning “the theory of critical regions,
power, etc.””:

1 am a little sorry that you have been worrying yourself at all with
that unnecessarily portentous approach to tests of significance
represented by the Neyman and Pearson critical regions, etc. In
fact, I and my pupils throughout the world would never think of
using them. If I am asked to give an explicit reason for this I
should say that they approach the problem entirely from the wrong
end, i.e., not from the point of view of a research worker, with a
basis of well grounded knowledge on which a very fluctuating
population of conjectures and incoherent observations is contin-
ually under examination. In these circumstances the experimenter
does know what observation it is that attracts his attention. What
he needs is a confident answer to the question “ought I to take
any notice of that?” This question can, of course, and for refine-
ment of thought should, be framed as “Is this particular hypothesis
overthrown, and if so at what level of significance, by this particular
body of observations?” It can be put in this form unequivocally
only because the genuine experimenter already has the answers
to all the questions that the followers of Neyman and Pearson
attempt, I think vainly, to answer by merely mathematical con-
sideration.

1245

6. CONDITIONAL INFERENCE

While Fisher’s approach to testing included no detailed
consideration of power, the Neyman-Pearson approach
failed to pay attention to an important concern raised by
Fisher. To discuss this issue, we 